Le nanotecnologie quintuplicano la capacità delle batterie al Litio

0
3337

Nuovi materiali come lo zolfo e una nuova tecnica produttiva per gli elettrodi delle batterie al Litio, consentono di ottenere una eccezionale combinazione di capacità e durata

E’ del tutto ovvio che se diventasse commercialmente disponibile a costi abbordabili un nuovo tipo di batteria al Litio con capacità quintupla e durata oltre doppia rispetto alle attuali l’impatto (positivo) sul mondo delle auto elettriche sarebbe formidabile. Ed è proprio questo che promette l’invenzione annunciata ieri su Nature Communications dai ricercatori dell’università di Stanford.

Quando si parla genericamente di batterie al Litio, questo elemento è sempre presente ma fondamentalmente nell’elettrodo Anodo e spesso anche nell’elettrolita. Invece i composti utilizzati per la realizzazione dell’elettrodo Catodo possono essere svariati e differenziano considerevolmente le prestazioni della batteria.

Nel tipo più comune di batterie al Litio, solitamente chiamate Litio-Ioni, il catodo è realizzato in diossido di manganese. Sono di questo tipo oltre i tre quarti di tutte le batterie al litio attualmente prodotte.

Le batterie note come Litio-Polimeri costituiscono una evoluzione di questo schema, ma con un elettrolita solido anzichè liquido, realizzato con un polimero conduttivo. Questi tipi di batterie possono immagazzinare mediamente 250-300 Wh per kg e tipicamente mantengono l’80% della loro capacità dopo 500 cicli di carica-scarica.

Fin qui la tecnologia commercialmente disponibile. Da un punto di vista teorico, però, è noto da tempo che esistono altre combinazioni di materiali per il Catodo che possono incrementare notevolmente la densità energetica delle batterie al Litio, se si riuscissero a risolvere alcuni problemi costruttivi.

Emblematico il caso dello Zolfo. Teoricamente, batterie al Litio con catodo di zolfo dovrebbero immagazzinare ben 1600 Wh/kg, oltre 5 volte la capacità delle comuni batterie Li-Ion e Li-Polymer. In pratica risulta difficile costruire simili batterie, perchè i composti che si formano sul Catodo durante la scarica tendono a disperdersi e perchè provocano una espansione delle dimensioni del Catodo stesso che col tempo portano alla fessurazione del suo involucro di contenimento.

Ora i ricercatori dell’università di Stanford hanno scoperto il modo di costruire un Catodo di zolfo con un sistema di contenimento che concilia le esigenze elettriche, chimiche e meccaniche permettendo alle reazioni litio-zolfo di avvenire regolarmente ma senza apprezzabile deterioramento della struttura dell’elettrodo, per una lunga durata.

L’accorgimento consiste nel polverizzare le particelle di zolfo su una scala di 800 nanometri e nel circondarle singolarmente con dei nanogusci di biossido di titanio di diametro leggermente superiore a quello delle particelle di zolfo contenute: un po’ come un uovo con guscio di titanio, tuorlo di zolfo e albume assente. La cavità tra “guscio” e “tuorlo” permette alla particella di zolfo di formare composti con il Litio e quindi di crescere di dimensioni durante la scarica, ma senza sottoporre a stress l’involucro grazie allo spazio libero. 

Il processo nanotecnologico con cui vengono ottenute queste sferule con cavità è la vera innovazione. Si parte con le nanoparticelle di zolfo, si depone sulla loro superficie il rivestimento di titanio solido nanoporoso e infine si utilizza un solvente dello zolfo, che sia capace di permeare il guscio di titanio (ma senza scioglierlo), penetrare all’interno e qui corrodere il “tuorlo” di zolfo riducendone il diametro a parità di diametro del guscio, creando così la cavità in ogni sferula.

(fonte: Nature.com)

Estremamente interessanti le conseguenze. Con i primi prototipi si è già osservata una densità energetica di 1030 Wh/kg, non ancora al massimo valore teorico eppure già 4-5 volte superiore a quella delle comuni batterie al Litio. Di grande rilievo anche la durevolezza visto che dopo 1.000 cicli di carica-scarica la batteria ha mantenuto il 70% della capacità e ben il 98.4% di efficienza faradica (ossia la frazione di carica che viene effettivamente restituita durante la scarica, senza dispersioni): quest’ultimo dato dimostra che a livello nanostrutturale non ci sono state le temute alterazioni che di solito compromettono la funzionalità dei Catodi di zolfo.

LASCIA UN COMMENTO

Please enter your comment!
Please enter your name here